Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(36): 15000-15007, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37665054

RESUMO

Among the various kinds of spin defects in hexagonal boron nitride (hBN), the negatively charged boron vacancy (VB-) spin defect that can be site-specifically generated is undoubtedly a potential candidate for quantum sensing, but its low quantum efficiency restricts its practical applications. Here, we demonstrate a robust enhancement structure called reflective dielectric cavity (RDC) with advantages including easy on-chip integration, convenient processing, low cost and suitable broad-spectrum enhancement for VB- defects. In the experiment, we used a metal reflective layer under the hBN flakes, filled with a transition dielectric layer in the middle, and adjusted the thickness of the dielectric layer to achieve the best coupling between RDC and spin defects in hBN. A remarkable 11-fold enhancement in the fluorescence intensity of VB- spin defects in hBN flakes can be achieved. By designing the metal layer into a waveguide structure, high-contrast optically detected magnetic resonance (ODMR) signal (∼21%) can be obtained. The oxide layer of the RDC can be used as the integrated material to implement secondary processing of micro-nano photonic devices, which means that it can be combined with other enhancement structures to achieve stronger enhancement. This work has guiding significance for realizing the on-chip integration of spin defects in two-dimensional materials.

2.
Nat Commun ; 14(1): 2893, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210408

RESUMO

Hexagonal boron nitride (hBN) is a remarkable two-dimensional (2D) material that hosts solid-state spins and has great potential to be used in quantum information applications, including quantum networks. However, in this application, both the optical and spin properties are crucial for single spins but have not yet been discovered simultaneously for hBN spins. Here, we realize an efficient method for arraying and isolating the single defects of hBN and use this method to discover a new spin defect with a high probability of 85%. This single defect exhibits outstanding optical properties and an optically controllable spin, as indicated by the observed significant Rabi oscillation and Hahn echo experiments at room temperature. First principles calculations indicate that complexes of carbon and oxygen dopants may be the origin of the single spin defects. This provides a possibility for further addressing spins that can be optically controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...